Air Quality Modelling for Cycle Enfield

21st January 2016

Introduction

- Cycle Enfield is proposing to introduce segregated cycle lanes along the A1010, A105 and A110
- Further measures:
 - Free cycle training for anyone living, working, or studying in Enfield
 - Installation of additional cycle parking
 - Introduction of a £10 bike loan scheme
- Together, these schemes are expected to increase the modal share by 5% by 2020
- Changing the road layout, traffic flows, speeds, and congestion will impact air quality
- CERC was commissioned to assess the air quality impacts

Health impacts of air quality

 Government advice on health impacts of air quality cover a range of pollutants

Pollutant	Health effects
	These gases irritate the airways of the lungs, increasing the symptoms of those suffering from lung diseases
	Fine particles can be carried deep into the lungs where they can cause inflammation and a worsening of heart and lung diseases

- Both long-term and short-term exposure impact mortality
- London 2010 PM_{2.5}: 52630 life-years lost, 1990 hospital admissions

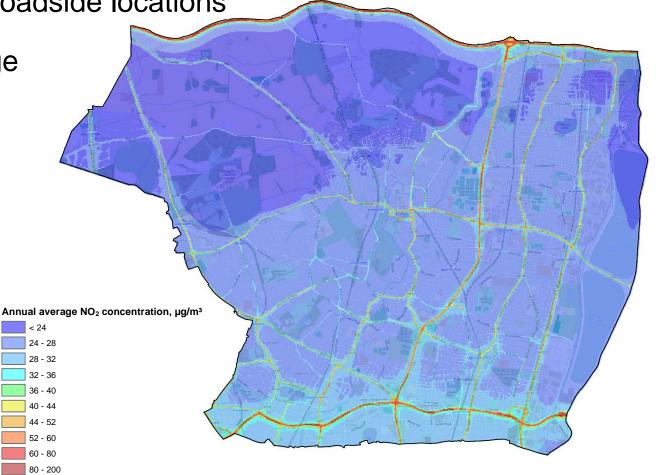
NO₂: 88113 life-years lost, 740 hospital admissions

COMEAP factor 1.025 per 10µg/m³ exposure to long-term NO₂

Current situation

- Local Authorities have a duty to review and assess air quality
- UK air quality objectives, based on EU limit values

	Value (µg/m³)	Description of standard
NO ₂	200	Hourly mean not to be exceeded more than 18 times a calendar year (modelled as 99.79 th percentile)
	40	Annual average
PM ₁₀	50	24-hour mean not to be exceeded more than 35 times a calendar year (modelled as 90.41 st percentile)
	40	Annual average
PM _{2.5}	25	Annual average


 If a local authority finds any places where the objectives are not likely to be achieved, it must declare an Air Quality Management Area there

Current situation

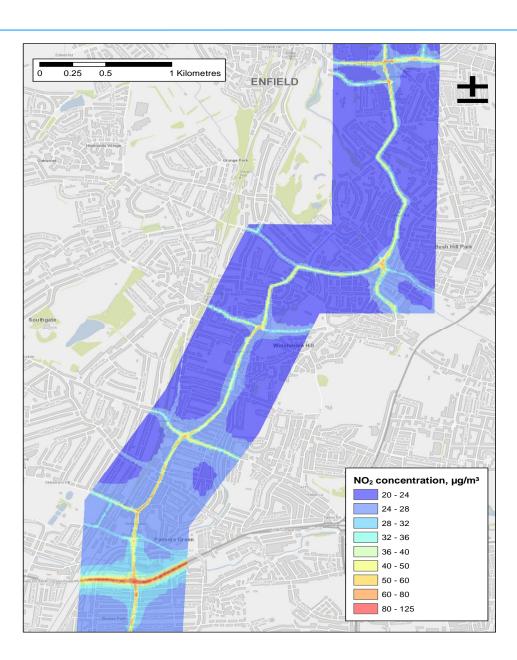
 Whole of Enfield declared an Air Quality Management Area due to exceedences of the objectives for nitrogen dioxide and PM₁₀ at busy roadside locations

 Annual average NO₂ maps for 2015 show predicted exceedences

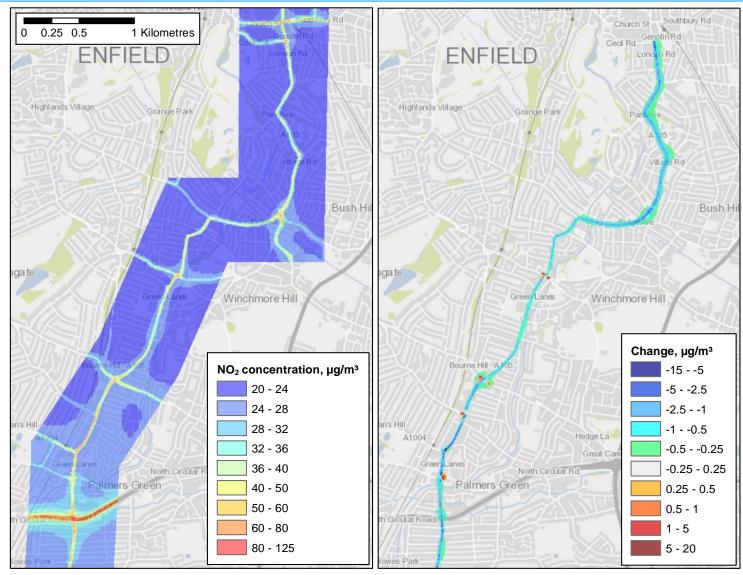
Air quality modelling

- Air quality modelling carried out to assess impact of Cycle Enfield scheme on air quality along the A105
- Uses ADMS-Urban software developed by CERC (www.cerc.co.uk)
 - Widely used for Local Authority air quality assessments and planning applications and for the airTEXT forecasting system
 - Uses traffic flow and speed data; emissions data for other sources; and meteorological data
- ADMS-Urban has been validated using various datasets
- Model input data and assumptions verified using locally measured air quality data

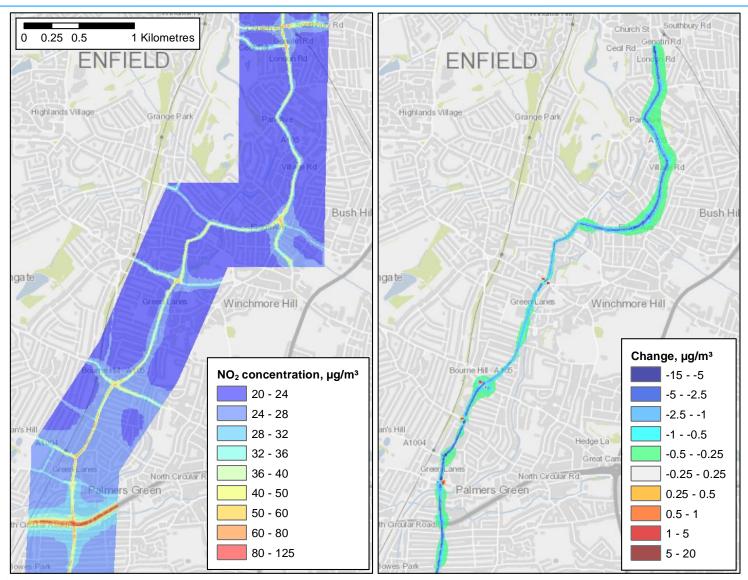
Enfield modelling


- Modelled scenarios:
 - Baseline (do-nothing)
 - Reduction in car flows resulting in reduction in total traffic flow of 2.5%, 5% and 10%
- Traffic data provided included:
 - local traffic counts
 - data on queue length and delay times at major junctions for each scenario
- Other sources:
 - Idling at bus stops
 - Emissions from non-traffic sources from the London Atmospheric Emissions Inventory

Current situation


Annual average NO₂ concentrations

 Exceeds air quality standard of 40 μg/m³ along major roads



5% traffic reduction

10% traffic reduction

Model results

- With 2.5% reduction in traffic:
 - Annual average NO₂ concentration predicted to decrease by 0.25 μg/m³ to 0.5 μg/m³ at roadside locations
- With 10% reduction in traffic:
 - Annual average NO₂ concentration predicted to decrease by up to 1.5 μg/m³ at roadside locations
- Some increases in concentrations at junctions where increased delays
- Smaller improvements in particulate concentrations
- Concentrations still predicted to exceed air quality standards, but will have beneficial impact on health of residents living along road

