Air pollution and cycling

Audrey de Nazelle

Cycling towards a better Enfield: Health, Business and Travel 8th April 2016 Enfield, UK

Global Burden of Disease 2010: top risk factors

Lim et al. The Lancet 2012

Ambient air pollution health effects

• More than 3 million deaths/year (particulate matter and ozone)

- But also:
 - low birth weight and preterm birth
 - cognitive development
 - o autism
 - o diabetes
 - o obesity

UK

UK (PM2.5):

- 29 000 premature deaths,
- average loss in life expectancy 6 months.

London:

 Around 9500 deaths per year from both PM2.5 and NO2 (assuming 30% overlap, 3500 deaths from PM2.5, 5900 from NO2)

Enfield:

- 138 deaths (1944 years of life lost) from PM2.5
- 212 deaths (2999 years of life lost) from NO2 (assuming 30% overlap)

(Walton et al. 2015)

Source categories responsible for the largest impact on mortality linked to outdoor air pollution in 2010

J Lelieveld et al. Nature 525, 367-371 (2015) doi:10.1038/nature15371

Source: Tim Oxley

Source: Tim Oxley

What could be the effect of cycling schemes on air pollution?

- Could lead to an overall reductions in air pollution, but this is difficult to prove
- Examples of rigorously evaluated impacts of interventions on air pollution are scarce
- Even ambitious large-scale policies are difficult to evaluate

\rightarrow examples...

- Car free sundays in Mestre (Italy): no effect on air quality (Masiol et al. 2014)
- Car free day in Paris: 40% reduction in areas where cars were banned (Airparif)

Imperial College London London Congestion Charging Scheme

- Introduced in February 2003 (22km²)
- Study measured air pollution 2001-2004 in affected and control sites, at background sites:
 - 12% decrease in PM10
 - 10 to 25 % decrease in NO,
 - 2 to 20% increase in NO2

- Difficulties in attributing changes in air pollution:
 - Weather
 - Construction
 - Increase in diesel-powered buses and taxis
 - Other trends and changes
 - Number and location of air quality monitors
 - Expected reductions from local level schemes necessarily relatively small.

Changes in air pollution and deaths/year for transport scenarios in Barcelona

scenario	PM2.5 concentration
	% reduction
20% in-city car trip reduction, all replaced by biking	0.32
20% in-out city car trip reduction, 20% replaced by biking	0.58

Rojas-Rueda et al. Environment International 49 (2012) 100-109

Tech vs behaviour

Scenario	Technological and behavioural changes			
Tech 1	All double-deck buses to hybrid; all single deck buses to zero emission; all taxis to Euro 6 (diesel black cabs)			
Tech 2	Tech 1 + Ultra Low Emission Zone (ULEZ) implemented			
Tech 3	Tech 2 + ban diesel cars completely from London			
Behaviour 1	Cycle superhighway (all reduced car traffic to bicycles) – reduce traffic flow 10%			
Behaviour 2	Increased active travel (5% car trips to cycling; 5% car trips to walking) and public transport (10% car trips to bus) = 20% of car trips replaced			
Behaviour 3	Most increased active travel (25% car trips to cycling; 15% car trips to walking) and public transport (10% car trips to bus) = 50% of car trips replaced			
Combined ideal	No private cars in London (30% car trips to bus, all of which are zero emission; 50% car trips to cycle; 20% car trips to walking) and all black cabs zero emission, including London wide ULEZ standards for remaining vehicles			

Tech vs behaviour

Current major public health challenges

- Urban air pollution
- The gobal physical inactivity pandemic
- Traffic injuries (8th cause of death worldwide, 6 in Western Eu)
- Climate change

→ International calls for multilevel approaches: planning cities for health

→ Active travel policies

Imperial College London Cities planning to go (partly) car-free

Imperial College London Effectiveness and health impacts of transport policies: The PASTA project

YOU CAN PARTICIPATE! www.pastaproject.eu

PHYSICAL ACTIVITY THROUGH SUSTAINABLE TRANSPORT APPROACHES

Contact me: Audrey de Nazelle, anazelle@imperial.ac.uk

Extra slides

Literature review on exposure contrasts in different modes in Europe: Modes vs background concentrations

ratio to Background

Imperial College London Across.Studies McNabola.et.al.(2008) 0 \diamond de.Nazelle.et.al.(2012) Gulliver.&.Briggs.(2004) Moreno.et.al.(2015) Ragletti.et.al.(2013) Δ ∇ +ø Kaur.et.al.(2005) × 2 3 5 0 4 PM2.5 UFP Walk Literature review Cycle ÷ on exposure × Car contrasts in ÷ Bus different modes Bcarbon CO in Europe: Walk Modes vs walk -8-Cycle - 🕄 Car Bus v°,

2

0

3

ratio to Walk

5

Imperial College London Across.Studies Kaur.et.al.(2005) 0 ∇ McNabola.et.al.(2008) Ragletti.et.al.(2013) Adams.(2001) Δ Q Boogaard.et.al.(2009) de.Nazelle.et.al.(2012) Int.Panis.et.al.(2010) +* Zuurbier.et.al. (2010) × ⊕ 5 0 2 3 PM2.5 UFP Walk 3 Literature review Cycle on exposure Car contrasts in Bus ¥ different modes CO Bcarbon in Europe: Walk Modes vs Cycle Cycle Car Bus 5 3 0 2 4

ratio to Cycle

Average concentrations and inhaled doses

de Nazelle et al. 2012 Atmospheric Environment. 59:151-159; 2012

	IR (L/min)	Trip time (min)
Walk	23	49
Bike	37	24
Bus	10	34
Car	10	28

For a given level of air pollution, is there a tipping beyond which additional physical activity does not bring additional benefits, and a "break-even" point beyond which additional physical activity brings greater risks?

Physical activity benefits vs. risk due to increased exposure to air pollution

Imperial College

London Purely technological solutions vs demand management? (e.g. active travel)

- Reduction in vehicle use leads to reductions in nonexhaust emissions and noise
- Woodcock et al. (2009) Comparison of GHG emission policy scenarios in London: **death per million people**

scenario	physical activity	Air pollution	Traffic mortality	TOTAL
increased active travel	-528	-21	+11	-538
lower carbon emission vehicles	0	-17	0	-17

Woodcock et al. 2009 The Lancet , v3674, 9705: 1930-1943